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Abstract. The detection of community structure has been used to reveal the relationships between individ-
ual objects and their groupings in networks. This paper presents a mathematical programming approach
to identify the optimal community structures in complex networks based on the maximisation of a net-
work modularity metric for partitioning a network into modules. The overall problem is formulated as
a mixed integer quadratic programming (MIQP) model, which can then be solved to global optimality
using standard optimisation software. The solution procedure is further enhanced by developing special
symmetry-breaking constraints to eliminate equivalent solutions. It is shown that additional features such
as minimum/maximum module size and balancing among modules can easily be incorporated in the model.
The applicability of the proposed optimisation-based approach is demonstrated by four examples. Compar-
ative results with other approaches from the literature show that the proposed methodology has superior
performance while global optimum is guaranteed.

PACS. 89.75.Hc Networks and genealogical trees – 02.60.Pn Numerical optimization – 87.23.Ge Dynamics
of social systems

1 Introduction

Many complex systems such as the Internet, social and bi-
ological relations have been represented as networks con-
sisting of a set of nodes joined in pairs by edges to reflect
the number of components in the systems and connections
among them. Statistical analysis of networks has revealed
a number of properties such as small world effects, de-
gree distribution and high network transitivity (see [1–3]
for reviews). In this paper, we develop a mathematical
framework for the identification and analysis of commu-
nity structures in networks.

Community structures are often found in various types
of networks where the vertices are naturally clustered into
tightly connected modules with large number of within-
module edges and few inter-module links. The ability
to identify and analyse such structures could be of vi-
tal importance in practice. For example, groups within
the World Wide Web may reveal the thematic relation-
ships of websites on similar topics [4,5]; modules found
in social networks may correspond to different local com-
munities [6,7]; subgroups in metabolic and cellular net-
works may reflect distinct functions in biological systems
and evolutionary properties of biological molecules and
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species [8,9]. Therefore, the modular view of networks pro-
vides a clearer understanding on how complex systems are
constructed from a number of fundamental components
and sheds light into the interactions of such components.

A number of computational approaches have been
proposed by various research groups to detect commu-
nity structures in networks. Traditional methods comprise
graph partitioning [10] and hierarchical clustering [11].
Graph partitioning deals with the separation of a net-
work into several groups with roughly equal sizes so as to
minimise the inter-group communications [12,13]. In the
area of parallel computing, graph partitioning is applied
in order to distribute different tasks to several processors
while minimising inter-processor communications. As par-
titioning a graph is NP-complete [10], most heuristic al-
gorithms proposed were bisection-based where a network
was divided into a number of communities by an iterative
bisection procedure [14,15]. It should be noted that the
optimal solutions to the graph partitioning problem can-
not be guaranteed since both the number of communities
as well as the sizes of each group are previously fixed by
the user.

Hierarchical clustering has also been applied exten-
sively in the investigation of community structures of
social and biological systems [9,16–18]. It is an agglomera-
tive procedure transforming a distance matrix of pair-wise



232 The European Physical Journal B

Fig. 1. A dendrogram of 10-node network generated by hier-
archical clustering.

similarity measurements between all pairs of nodes into a
hierarchical partition tree. Initially, each node forms an
independent module and the number of modules is grad-
ually reduced by merging the two most similar clusters
iteratively until the whole network is included in one com-
munity. Any horizontal cut of the hierarchical tree splits
the network into a number of subgroups (see Fig. 1 for a
network of 10 nodes and 3 modules). Although hierarchi-
cal clustering does not require any specification of the size
or number of modules, it cannot reveal which partition
is the best one. Another problem associated with hierar-
chical clustering lies in its tendency to group only tightly
connected nodes in the early stage of clustering because of
their strong similarities. However, it cannot always classify
nodes with few connectivities correctly since end solution
depends on where the agglomerative procedure starts.

Apart from traditional methodologies proposed above,
a number of local algorithms and physical models were ap-
plied to detect community structures. First, a set of self-
contained local algorithms to detect network communities
were proposed. The algorithms kept the same level of li-
ability and outperformed other existing approaches with
respect to computational costs [19,20]. Networks were also
treated as electric circuits and communities were identi-
fied based on notions of voltage drops across networks [21].
Furthermore, an algorithm based on a modified q-state
Potts model was presented [22]. Communities are consid-
ered as domains with equal spin values near the ground
state of the system, which was approximated using Monte
Carlo optimisation. Finally, Son et al. developed a ran-
dom field Ising model to determine the community struc-
ture [23]. The ground state problem is equivalent to the
maximum flow problems, which can be solved using com-
binatorial optimisation algorithms.

In more systematic investigations of network proper-
ties, the modularity metric [24] was introduced as a mea-
sure of network partition quality. Network modularity is
the fraction of all edges that lie within communities mi-
nus the expected value of the same quantity in a graph
in which the vertices have the same degrees but edges are
placed at random. A modularity value of 0 indicates that
the network considered is equivalent to random networks
and no obvious community structures are observed; mod-
ularity approaching the maximum value of 1, indicates
strong community structure.

Newman and Girvan [24] developed a series of divi-
sive algorithms to discover community structures, involv-
ing the iterative removal of edges with the highest “be-
tweenness” score to split the network into communities.
These algorithms were highly effective at discovering com-
munity structures for many testing cases at the cost of
very high computational resources when analysing large-
scale networks. More computationally efficient algorithms
were proposed to tackle networks with larger sizes [25,26].
Newman proved that network modularity can be rewritten
as eigenvectors of a modularity matrix and this expression
leads to a spectral algorithm for community detection re-
sulting in higher quality solutions when compared to com-
peting approaches [27].

Since proposing the concept of modularity, the com-
munity structure detection problem can be posed as an
optimisation task which finds an optimal partition at the
maximum value for modularity. Simulated annealing was
first used to identify functional modules in metabolic net-
works of twelve organisms from three different superkin-
doms by maximising their modularity values [8]. The same
optimisation methodology was also applied to analyse and
benchmark social networks [28] where a trade-off between
quality of solutions and computational requirements was
noted. Moreover, the applicability of extremal optimisa-
tion was demonstrated through a number of test cases of
computer-simulated and real networks [29].

Recently, Fortunato and Barthelemy [30] reported the
observation that the optimisation of modularity metric
has a resolution limit, so submodules smaller than a cer-
tain scale in large networks may fail to be detected since
the modularity optimisation procedure tends to combine
small communities into larger ones. Kumpula et al. [31]
showed that the q-state Potts model introduced by Re-
ichardt and Bornholdt [22] also has a resolution thresh-
old. Both findings raised major concerns of the reliability
of modularity optimisation. However, Arenas et al. over-
come such problems by proposing a systematic method
to discover community structures at different resolution
levels using the original modularity concept [32].

Although the presence of resolution limit of modu-
larity maximisation makes some small modules in large
networks invisible, modularity is still one of the most
widely accepted metrics to detect community structures.
All approaches mentioned above are able to achieve good
quality modularity values when partitioning networks of
various sizes. However, a major limitation is that global
optimality of the solutions cannot be guaranteed. Here, a
general mathematical programming formulation for the
network community structure identification problem is
presented where the objective function considered is max-
imisation of the modularity value and can be solved to
global optimality. More importantly, the proposed optimi-
sation model can easily be extended in the future to detect
communities more accurately when alternative measures
become available. Other additional features such as min-
imum/maximum module size and balancing among mod-
ules can also be incorporated using mathematical pro-
gramming to aid accurate detection.
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The paper is structured as follows: the problem state-
ment for network community detection is defined in the
next section. Section 3 presents an MIQP model to de-
tect community structures of a network with the max-
imum modularity value. Symmetry breaking constraints
are then proposed to avoid redundant equivalent solu-
tions thus reducing the computational requirements sig-
nificantly. The applicability of the proposed mathematical
model is demonstrated in Section 4 through the use of four
network examples and comparisons of the present method-
ology with other literature approaches. Finally, some con-
cluding remarks are made in Section 5.

2 Problem statement

Networks are defined by a set of nodes and links connect-
ing them. Each link is undirected and unweighted. Overall,
the problem of network community structure identifica-
tion can be stated as follows:
given:
• an undirected network consisting of N nodes and L

links;
determine:
• optimal number of modules;
• node-module allocation;
so as to:
• maximise the network modularity metric.

3 Mathematical formulation

The indices, sets and parameters associated with the
mathematical model are listed below:

Indices

n, e nodes
l links
m, k modules

Parameters

N total number of nodes
L total number of links
M total number of modules
dn degree of node n
α minimum module size
β maximum module size
ε maximum size difference between

any pair of modules

Sets

S M most connected nodes
AM n allowed modules for assignment

to node n ∈ S
MLl allowable modules for link l
Avm nodes allowed assignment

to module m
Bn nodes with higher connectivity

than node n

The mathematical formulation is based on the following
key variables:

Binary variables

Em 1 if module m exists;
0 otherwise

Xlm 1 if link l belongs to module m;
0, otherwise

Ynm 1 if node belongs to module m;
0, otherwise

Positive variables

Lm number of links among nodes
within module m

Dm degree of module m

3.1 Objective function

The objective function considered here is the maximisa-
tion of the network modularity metric as proposed by New-
man and Girvan [24]:

Q =
∑

m

[
Lm

L
−

(
Dm

2L

)2
]

. (1)

3.2 Allocation constraints

Each node should be allocated to exactly one module:
∑

m

Ynm = 1 ∀n. (2)

Link l belongs to module m if both nodes associated with
l (i.e. n and e) are allocated to module m. This logical
condition can be written mathematically as:

2Xlm ≤ Ynm + Yem ∀m, l = {n, e}. (3)

Constraint (3) can alternatively be disaggregated into two
tighter inequalities:

Xlm ≤ Ynm ∀m, l = {n, e}, (4)
Xlm ≤ Yem ∀m, l = {n, e}. (5)

3.3 Definition of Lm and Dm

Lm is defined as the total number of links within mod-
ule m:

Lm =
∑

l

Xlm ∀m (6)

Dm is defined similarly to be equal to the sum of the
degrees of nodes allocated to module m:

Dm =
∑

n

dnYnm ∀m. (7)
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3.4 Additional constraints

One of the key advantages of using mathematical pro-
gramming approaches is the ease of accommodating user-
defined conditions. Here, a number of additional features
are formulated mathematically.

First, we describe how minimum and/or maximum
module sizes can be incorporated. A binary variable, Em,
is introduced to determine the existence or not of mod-
ule m. A degeneracy constraint is proposed to enforce that
module m is allowed only when the previous module exists
(i.e. Em−1 = 1):

Em ≤ Em−1 ∀m = 2, ..., M. (8)

Note that if module m − 1 does not exist (i.e. Em−1 =
0), then module m, does not exist as well (i.e. Em = 0).
Module m is not empty when the following two constraints
are active at the same time:

∑

l

Xlm ≥ α ∀m (9)

∑

l

Xlm ≥ β ∀m. (10)

The above constraints (9, 10) should be activated only if
module m exists and therefore, they should be rewritten
as:

∑

l

Xlm ≥ αEm ∀m (11)

∑

l

Xlm ≤ βEm ∀m. (12)

It is worth mentioning that the above constraints (8, 11,
12) safeguard that all occupied modules are first ranked
to avoid equivalent solutions and then module sizes within
prespecified bounds are enforced.

Next, we demonstrate how balancing issues among
modules, if required, can easily be accommodated in the
current optimisation approach. By balancing, we denote
that any two non-empty modules m and k, (i.e. Em =
Ek = 1) cannot differ by more than a user-defined num-
ber of links, ε:

|Lm − Lk| ≤ ε ∀m, k > m. (13)

The above absolute-value inequality can mathematically
be written as:

Lm − Lk ≤ ε ∀m, k > m (14)
Lk − Lm ≤ ε ∀m, k > m. (15)

It should be added that the above constraints are activated
only if both modules m and k are selected (i.e. Em = Ek =
1). Thus, constraints (14, 15) can be rewritten as:

Lm − Lk ≤ ε + β(2 − Em − Ek) ∀m, k > m (16)
Lm − Lk ≤ ε + β(2 − Em − Ek) ∀m, k > m. (17)

Table 1. Equivalent solutions for a three-module problem.

Module 1 Module 2 Module 3
Solution 1 n1, n2 n3, n7, n8 n4, n5, n6

Solution 2 n1, n2 n4, n5, n6 n3, n7, n8

Solution 3 n4, n5, n6 n1, n2 n3, n7, n8

Solution 4 n4, n5, n6 n3, n7, n8 n1, n2

Solution 5 n3, n7, n8 n1, n2 n4, n5, n6

Solution 6 n3, n7, n8 n4, n5, n6 n1, n2

The degeneracy constraint (8) indicates that the value of
Em can be forced to 1 when module k is non-empty (i.e.
Ek = 1), so constraints (16) and (17) can be simplified as:

Lm − Lk ≤ ε + β(1 − Ek) ∀m, k > m (18)
Lm − Lk ≤ ε + β(1 − Ek) ∀m, k > m. (19)

3.5 Symmetry-breaking constraints

It is widely believed that when a set of objects is clus-
tered into a number of modules, any renumbering of the
modules generates an equivalent solution [33]. Specifically,
if a network ends up with M optimal communities, there
are M ! equivalent solutions. Table 1 enumerates equiv-
alent solutions for a network example with 8 nodes and
3 modules. Here, two symmetry breaking constraints are
proposed to eliminate equivalent solutions and thus to re-
duce the number of nodes explored during a branch-and
bound solution procedure.

Suppose we seek to partition all nodes into M mod-
ules. In order to avoid equivalent solutions through the
renumbering of modules, each node is allowed to be allo-
cated to one of a particular set of modules, AM n. First,
all nodes are sorted based on their connectivities. For the
example shown in Table 1, let us assume that n1 is the
most connected node, n2 is the second most connected
node and so on. The AM n set is then constructed as: n1

is allocated to module 1 only; n2 can be assigned to either
module 1 or 2. All other nodes can be allocated to any of
the three available modules. Therefore, constraint (2) can
be rewritten as the following equality:

∑

m∈AMn

Ynm = 1 ∀n. (20)

By activating constraint (20), solutions 3 to 6 in Table 1
can be eliminated as node n1 is allocated to module 1.
It should be mentioned that similar constraints as in (20)
have also been reported by Klein and Aronson [33] in the
case of cluster analysis.

Since each node n has its own allowable set of modules
(AM n), link l that connects nodes n and e can be allo-
cated to the modules that appear in both AMn and AMe.
Here, we define set MLl (allowable modules for link l) as
AMn ∩ AMe, where l = {n, e}. Consequently, constraints
(4) and (5) can be replaced by:

Xlm ≤ Ynm ∀l = {n, e}, m ∈ MLl (21)
Xlm ≤ Yem ∀l = {n, e}, m ∈ MLl (22)
Xlm = 0 ∀l, m /∈ MLl. (23)
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Table 2. Computational results for illustrative examples.

OptMod Hierarchical clustering Literature approaches

Examples OBJa N b
modu CPU (s) OBJ Nmodu CPU (s) OBJ Nmodu

Zachary 0.4198 4 1.03 0.4198 4 0.33
0.4190 [27] 4
0.3724 [24] 5

Dolphin 0.5285 5 197.89 0.5084 5 1.10 0.5200 [24] 5

Les Miserables 0.5600 6 55.58 0.5000 19 1.82
0.5400 [24] 11
0.5460 [28] 5

p53 0.5351 7 1844.31 0.4580 9 3.58 N/A N/A

a Best modularity value found; b number of modules.

Another logical condition can be imposed by not allowing
node n to be allocated to module m (assuming m ∈ AMn)
if all previous nodes e (e ∈ Bn∩Avm−1) have not been as-
signed to module m − 1 (i.e.

∑
e∈(Bn∩Avm−1) Ye,m−1 = 0,

then Ynm = 0). Note that Bn denotes the set of nodes
e with larger number of connections than n and Avm

denotes the set of nodes that can be assigned to mod-
ule m. Considering the example shown in Table 1, we
then have: Bn1 = φ, Bn2 = {n1}, Bn3 = {n1, n2};
Av1 = {n1, n2, ..., n8}, Av2 = {n2, n3, ..., n8}, Av3 =
{n3, n4, ..., n8} and so on. As a consequence, if nodes n1

and n2 are allocated to module 1, then node n3 should not
be placed to module 3; if nodes n2 and n3 are allocated to
module 2, then node n4 should not be assigned to module
4; if nodes n1, n2 and n3 are assigned to module 1, then
node n4 is also excluded from module 3 etc.

Based on the above description, the following logical
constraint is proposed:

Ynm ≤
∑

e∈Bn∩Avm−1

Yem−1 ∀n ≥ 3, m = 3..., |AMn|.

(24)
When applying the above constraint to the example shown
in Table 1, we do not allow node n3 to be assigned to
module 3 as node n2 appears in module 1 together with
node n1. Thus, solution 2 is eliminated and only solution 1
is feasible.

Symmetry breaking constraints (20) and (24) avoid all
other M ! − 1 equivalent solutions. From our experience,
significant computational enhancements are also achieved
by only considering the M most connected nodes (defined
as set S). Both symmetry breaking constraints are active
for all nodes in S:

∑

m∈AMn

Ynm = 1 ∀n ∈ S (25)

∑

m

Ynm = 1 ∀n ∈ S (26)

Ynm≤
∑

e∈(Bn∩Avm−1)

Yem−1 ∀n∈S, n≥3, m=3..., |AMn|.

(27)
Overall, the resulting mathematical model (OptMod) for
determining community structures based on the modu-
larity metric incorporating the above symmetry breaking

constraints for network community identification is formu-
lated as follows:
[OptMod]:

Maximise Q =
∑

m

[
Lm

L
−

(
Dm

2L

)2
]

subject to
constraints (6−8, 11, 12, 18, 19, 21−23, 25−27).
Em, Xlm, Ynm ∈ {0, 1} ∀n, m, l

Lm, Dm ≥ 0 ∀m.

The resulting mathematical formulation is a mixed integer
quadratic programming (MIQP) model comprising a con-
cave quadratic objective function which is maximised with
a set of linear constraints and mixed binary/continuous
optimisation variables. The CPLEX mixed integer opti-
misation solver [34] is used to solve the proposed model
to global optimality, due to its convexity, through the
branch-and-bound procedure (see, for example, [35]).

4 Computational results

The proposed mathematical model (OptMod) is applied
to four network examples from different research areas. All
examples are implemented in GAMS (General Algebraic
Modeling System) [36] using the CPLEX mixed integer
optimisation solver with 0% margin of optimality and
36000 seconds CPU limit. The computational statistics
and the optimal modularity values obtained by the pro-
posed MIQP are reported in Table 2. The optimal modu-
larity is then compared with other literature approaches
for community structure identification (see Tab. 2). As
an alternative, the computational requirements and the
best modularity value for each partition from hierarchical
clustering are reported. The hierarchical clustering
runs are performed by the cluster package using the
statistical computing language R (www.r-project.org).
The community structures for all networks are dis-
played through the Pajek network analysis program
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/).
In each figure, dotted lines are used to reveal the modules
obtained.

The first example considers a social network compiled
by Zachary [37], who spent two years in observing the so-
cial communications between members in a karate club



236 The European Physical Journal B

Fig. 2. Optimal community structure for the Zachary’s karate
club network using OptMod.

at an American University. Nodes in the network stand
for club members and the links reflect the social rela-
tions between them (see Fig. 2). According to the litera-
ture [37], the club naturally split in two smaller communi-
ties because of a dispute between the club’s administrator
(around node 1) and the karate teacher (around node 34).
This actual division is visualised in Figures 2 and 3 where
squares and circles denote the members of each commu-
nity. Our approach shows that the optimal partition is
found at a modularity value of 0.4198 when splitting the
network into four independent modules (see Fig. 2 for
the optimal partition). It can been seen clearly that the
optimal partition from the proposed model perfectly re-
flects the real community structure (Nodes of modules I
and II stand for members around the administrator and
modules III and IV belong to the teacher’s group). Sim-
ilar results were produced by hierarchical clustering [16],
greedy optimisation algorithm [26], simulated anneal-
ing [28], extremal optimisation [29] and the betweenness-
based iterative algorithms [24] (see Tab. 2). It is noted
that hierarchical clustering identifies the same commu-
nity structures as the optimal partition. The betweenness-
based algorithm [24] finds 5 modules with modularity of
0.3724 (see Fig. 3). Node 10, which is considered as an
independent module through that algorithm, should be
allocated together with node 34. The betweenness-based
algorithm also resulted in one misclassification (node 3)
when compared with the actual community structure ac-
cording to observations by Zachary [37].

The sensitivity of the network modularity value with
respect to different values of user-defined link difference
between modules, ε (from 1 to 30) in balancing constraints
is investigated for the Zachary example. It is observed that
the network is partitioned to two subgroups with equal

Fig. 3. Community structures identified through betweenness-
based iterative algorithm [24] for the Zachary’s karate club
network.

sizes resulting to a modularity value of 0.3718 when ε is
less than 6. As the value of ε is further increased, the
Zachary network is then divided into 3 or 4 modules with
better modularity values. The optimal partition is finally
obtained with the maximum modularity value of 0.4198
when the value of ε is larger or equal to 17. It can clearly
be seen from Figure 4 that low ε values enforce nodes to
distribute evenly within modules while sacrificing the so-
lution quality. Large ε relaxes the balancing constraints
thus leading to the optimal partition achieved by the pro-
posed MIQP model. Consequently, user criteria can pri-
oritise the prevalence of either module size balancing or
network partitioning optimality. We note that only this
example has been analysed with balancing constraints in
order to showcase their use. It is obvious that this type
of constraint can be used at will in any other examples as
required by the user.

In the second example, we present a community of
62 bottlenose dolphins living in Doubtful Sound, New
Zealand, constructed by Lusseau [38,39] after seven years
of field studies. Each node represents a dolphin and the
links in the network are identified based on the signifi-
cantly frequent communications among them. Using this
network as input to the proposed MIQP model, 5 commu-
nities are found. Module I and modules II-V reflect the real
division observed by Lusseau [39] with zero misclassifica-
tion and the MIQP model indicates the existence of four
smaller communities in the second group (see Fig. 5 for
the optimal division by our approach; squares and circles
denote the actual partition reported by Lusseau). Com-
paring with the division from hierarchical clustering (see
Figs. 5 and 6), the optimal community structure merge
groups I and II of Figure 6, while partition module IV from
hierarchical clustering into two groups (see modules II
and IV of Fig. 5). Hierarchical clustering also results in 2
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Fig. 4. Sensitivity of optimal modularity values with parameter ε.

misclassification (nodes 8 and 20) when compared with
the real partition. It can be seen from Table 2 that all
methods partition the dolphin network into 5 communi-
ties. Hierarchical clustering and the betweenness-based it-
erative algorithms algorithm achieved a modularity value
of 0.5084 and 0.5200, respectively. Our approach results
in a maximum value of 0.5285, which is 3.80% and 1.61%
more efficient than the other two literature approaches.

The third example considered here is the network
showing the connections between major characters in
Victor Hugo’s novel of crime and redemption in post-
restoration France, Les Miserables. This network was con-
structed by Knuth [40] where nodes represent characters
and edges reveal the coappearence of the corresponding
characters in one or more scenes. A modularity value of
0.5400 was reported by Newman and Girvan [24] when
partitioning the network into 11 communities and hier-
archical clustering results in a modularity value of 0.5000
with 19 communities. However, a number of modules iden-
tified by both approaches show few modular character-
istics as they contain only one node. According to our
model, optimal community presence is identified when
the number of modules is optimised to 6 with the maxi-
mum modularity value of 0.5600 (better than previous ap-
proaches). The optimal partition shown in Figure 7 clearly
reflects the plot structure of the novel and the importance
of each character in this book: each module corresponds to
the stories that the characters are involved in and a num-
ber of dominant characters such as Jean Valjean (node
12) and Javert (node 49) act as hubs of their communities
(modules I and VI, respectively).

Finally, we apply our model to the p53 protein-protein
interaction network constructed by Dartnell et al. [41].
This network involves an annotated protein interaction
map in mammalian cell cycle, DNA repair and apoptosis.
As a key element in maintaining genomic stability, pro-
tein p53 lies in the centre of the network and controls the

Fig. 5. Optimal community structure for the bottlenose dol-
phins of Doubtful Sound using OptMod.

Fig. 6. Community structures identified through hierarchical
clustering for dolphins of Doubtful Sound.
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Fig. 7. Optimal community structures for the Les Miserables
network.

Fig. 8. Optimal community structure for the p53 protein-
protein interaction network.

intra- and intercellular signals with gene transcription.
The p53 network consisting of 104 proteins and 226 inter-
actions has been proven to have a scale-free topology [41]
showing that a vast majority of the nodes are poorly con-
nected while few of them act as hubs with a high centrality.
Hierarchical clustering found 9 modules with modularity
of 0.4580 with 9 modules. The maximum modularity value
(0.5351) is again reported by our model partitioning the
p53 network into 7 communities (see Fig. 8). It is not sur-
prising that module I lies in the center of the network
and communicates with all other six modules. Node 68
(protein p53), the most central protein to the network, is
included in this module.

5 Concluding remarks

Many social, technical and biological systems can be repre-
sented as networks of interacting components. Community
structures are usually found in those systems where nodes
are naturally divided into subgroups with dense within-
module connections. Detection of such structures can be
vitally beneficial to the study of various complex systems
since nodes within the same module may share similar
functional properties and novel patterns or functions can
be deducted through the analysis of the interacting mod-
ules.

In this paper, a rigorous MIQP model has been pro-
posed to identify optimal community structure in complex
networks. The objective function considered is maximisa-
tion of the network modularity proposed previously [24].
Symmetry breaking constraints have been introduced to
avoid the generation of equivalent solutions thus enhanc-
ing the computational performance of the proposed model.
Our results have shown that global optimal solutions have
been achieved for all examples studied.

The search for the optimal network partition with the
maximum modularity value is difficult since the solution
space grows faster than any power of network size [29].
Danon et al. [42] compared several recent network com-
munity identification approaches in terms of sensitivity
and efficiency. Computational results indicated that the
most accurate methods tend to be computationally expen-
sive and may become prohibitive at large network sizes.
It is well understood that the development of faster and
more accurate methodologies might be the focus of future
research. The main contribution of our proposed model
lies in its suitability to find optimal community structures
of networks with small and medium sizes. More impor-
tantly, the power of mathematical programming is demon-
strated by easily incorporating other additional features
such as minimum/maximum module size and balancing
among modules in the proposed optimisation model. Fu-
ture work involves the investigation of alternative solution
approaches so as to detect communities in larger scale
complex networks with optimal or near-optimal modular-
ity values.
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